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CHAPTER 1 

F I N I T E  A U T O M A T A  

Formal languages and Automata Theory describes the 

basic ideas and models underlying computing. It suggests various 

abstract models of computation, represented mathematically. 
 
1.1 History 

Mathematicians and logicians made major contributions to the 

field of finite automata as early as the 20th century. The concept was first 

introduced by David Hilbert in 1927, but it was the work of Alonzo 

Church and Alan Turing in the 1930s that laid the theoretical foundation 

for finite automata as models of computation. In the mid-20th century, 

the renowned mathematician and computer scientist John von 

Neumann made substantial contributions to automata theory. The 

formalization of deterministic and nondeterministic finite automata 

emerged in the 1950s, with notable contributions from Michael O. Rabin 

and Dana Scott. Finite automata became integral to theoretical computer 

science, playing a crucial role in formal language theory and compiler 

design. The development of finite automata reflects a collaborative 

effort by pioneers in mathematics and computer science to understand 

the fundamental principles of computation and lay the groundwork for 

subsequent advances in the field. 

 
1.2 Finite State systems 

A finite automaton can also be thought of as the device shown below 

consisting of a tape and a control circuit which satisfy the following 

conditions:  

✓ The tape has the left end and extends to the right without an end.  

✓ The tape is dividing into squares in each of which a symbol can 

be written prior to the start of the operation of the automaton.  

✓ The tape has a read only head. 
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✓ The head is always at the leftmost square at the beginning of the 

operation.  

✓ The head moves to the right one square every time it reads a 

symbol.  

It never moves to the left. When it sees no symbol, it stops and 

the automaton terminates its operation.  

✓ There is a finite control which determines the state of the 

automaton and also controls the movement of the head. 

 
1.3 Applications of Finite Automata 

✓ Finite automata are extensively used in compilers for lexical 

analysis, the first phase of language processing. 

✓ It is useful in text processing and searching applications. 

✓ Finite state machines are utilized to model and analyze network 

protocols. 

✓ Finite state machines are used to design and model digital 

circuits. 

✓ Finite automata contribute to pattern recognition tasks, where 

recognizing specific sequences or patterns in data is essential. 

✓ Finite state machines are employed to model and control the 

behavior of robots. 

✓ Finite state machines play a crucial role in designing the control 

units of digital systems within these circuits. 

✓ Finite state machines and automata models are used in designing 

decision-making processes for AI agents. 

✓ Finite state machines are commonly used in game development 

for modeling the behavior of non-player characters. 
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3. Design FA to accept the string that always ends with 00. 

 
4. Design FA to check whether a given unary number is divisible by 3. 

 
5. Design FA to check whether a given binary number is divisible by 3. 

 
6. Obtain the  closure of states q0 and q1 in the following NFA with  

transition. 

 

 

 

 

Solution: 

 - CLOSURE {q0} = {q0, q1, q2} 

 - CLOSURE {q1} = {q1, q2} 

 

q0 q1 

 

q2 

a b c 

 
 
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Now we will show that 

 δʹ(p,a) = δ(q0,wa) 

But, 

 δʹ(p,a) = δʹ(q,a) = δʹʹ(q,a)  as  p = δʹʹ(q0,w) 

We have 

δʹʹ(q,a) =  δʹʹ(q0,wa)  

 

Thus, by definition of δʹʹ 

δʹ(q0, wa) =  δʹʹ(q0,wa)  

 

1.9.1 Problems for Converting NFA with   into NFA without  
 

1.  Construct NFA without  from NFA with . 

 
Solution: 

Find the ε – closure of all states: 

ε – closure (q0) = {q0, q1, q2} 

ε – closure (q1) = {q1, q2} 

ε – closure (q2) = {q2} 

 

Compute δʹ function: 

 δʹ(q0,0) = δʹʹ (q0,0)  =  ε – closure (δ(δʹ(q0,ε),0)) 

    =  ε – closure (δ({q0,q1,q2},0)) 

    =  ε – closure (q0)  = {q0,q1,q2} 

  δʹ(q0,1) = δʹʹ (q0,1)  =  ε – closure (δ(δʹ(q0,ε),1)) 

    =  ε – closure (δ({q0,q1,q2},1)) 

    =  ε – closure (q1)  = {q1,q2} 

 δʹ(q0,2) = δʹʹ (q0,2)  =  ε – closure (δ(δʹ(q0,ε),2)) 

    =  ε – closure (δ({q0,q1,q2},2)) 

    =  ε – closure (q2)  = {q2} 

 δʹ(q1,0) = δʹʹ (q1,0)  =  ε – closure (δ(δʹ(q1,ε),0)) 

    =  ε – closure (δ({q1,q2},0)) 

    =  ε – closure ()  = {} 

ε – closure (q0) 

= { q0,q1,q2} 



 

 

CHAPTER 2 

R E G U L A R  E X P R E S S I O N  

A regular expression plays a crucial role in describing 

languages. Let’s explore what regular expressions are and how 

they relate to regular languages. 
 
2.1 Regular Language 

A language is called regular language if there exists a finite 

automaton that recognizes it. For example, finite automaton M 

recognizes the language L if L = {w | M accepts w}. 

 

2.1.1 Operations on Regular Languages 
Let A and B be languages. We define regular language operations 

union, concatenation and closure as follows: 

Union   : A ∪ B = {x | x ∈ A ∨ x ∈ B} 

Concatenation  : A ◦ B = {xy | x ∈ A ∧ y ∈ B} 

Closure   : A* = {x1x2 . . . xk | k ≥ 0 ∧ xi ∈ A, 1 ≤ i ≤ k} 

 
2.2 Regular Expression 

A regular expression is a string that defines a finite pattern of strings 

or symbols. Each pattern corresponds to a set of strings, serving as a 

name for that set. 

Regular expressions are used to describe languages, and they allow 

us to express rules for constructing valid strings within those languages. 

 

2.2.1 Operations on Regular Expressions 
Let Σ be an alphabet. The regular expressions over Σ and the sets that 

they denote are defined recursively as follows: 

✓ Ø is a regular expression and denotes the empty set {}. 

✓  is a regular expression and denotes the set {}. 
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2.5.1.2 Problems 
1. Covert the given finite automata into a regular expression 

using substitution method. 
 

 
 
Solution: 

 r = 𝑟12
3 + 𝑟13

3   

𝑟𝑖𝑗
0 =  {

𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛          
𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛 +    

  [(𝑞𝑖, 𝑎) = 𝑞𝑗]  𝑖𝑓 𝑖 ≠ 𝑗
[(𝑞𝑖, 𝑎) = 𝑞𝑗]  𝑖𝑓 𝑖 = 𝑗

  

 

K= 0 

𝑟11
0 =      𝑟21

0 =  0  𝑟31
0 =  Ø  

𝑟12
0 =  0    𝑟22

0 =    𝑟32
0 =  0 + 1  

𝑟13
0 =  1    𝑟23

0 =  1  𝑟33
0 =    

 

K= 1 

𝑟𝑖𝑗
𝑘 = 𝑟𝑖𝑗

𝑘−1 + 𝑟𝑖𝑘
𝑘−1 (𝑟𝑘𝑘

𝑘−1)* 𝑟𝑘𝑗
𝑘−1 

𝑟11
1  = 𝑟11

0 +  𝑟11
0  (𝑟11

0 )* 𝑟11
0   =  +  ()* = + =  

𝑟12
1  = 𝑟12

0 +  𝑟11
0  (𝑟11

0 )* 𝑟12
0   = 0+  ()* 0 = 0+0=0 

𝑟13
1  = 𝑟13

0 +  𝑟11
0  (𝑟11

0 )* 𝑟13
0   = 1 +  ()* 1 = 1+1 =0 

 

𝑟21
1  = 𝑟21

0 +  𝑟21
0  (𝑟11

0 )* 𝑟11
0   = 0+ 0 ()* = 0+0=0 

𝑟22
1  = 𝑟22

0 +  𝑟21
0  (𝑟11

0 )* 𝑟12
0   =  + 0 ()*0 = +00 

𝑟23
1  = 𝑟23

0 +  𝑟21
0  (𝑟11

0 )* 𝑟13
0   = 1 + 0 ()*1 = 1+01 

 

 



 

 

CHAPTER 3 

R E G U L A R  G R A M M A R  

Language: “A language is a collection of sentences of finite length all 

constructed from a finite alphabet of symbols.”  

 

Grammar: “A grammar can be regarded as a device that enumerates 

the sentences of a language.” 

 

A formal grammar is a quad-tuple G = (N, T, P, S)   

where  

N is a finite set of non-terminals  

T is a finite set of terminals  

P is a finite set of production rules of the form α A β → α γ β 

  Where α, β, γ  (NT)∗, A  N ≠ ε 
S  N is the start symbol 

 
3.1 Chomsky Hierarchy (Type of Grammars) 

 
Class Grammars Languages Automaton Rules 
Type-0 Unrestricted  

Grammar 
Recursively 
Enumerable 
Language  

Turing 
Machine 
 

α  → β 
α, β  (NT)∗ 
α ≠ ε  

Type-1  Context 
Sensitive 
Grammar 

Context 
Sensitive 
Language 

Linear 
Bounded 
Automaton 

α A β → α γ β 

α, β, γ (NT)∗ 
A  N ≠ ε 

Type-2  Context-
free  
Grammar 

Context-
free 
Language 

Pushdown 
automaton 

A → α  
where A  N  
α  (N  T)∗ 

Type-3  Regular  
Grammar 

Regular 
Language 

Finite 
automaton 

A → α B  
A → B α 
A → α 
where A, B N and 
α T* 

 
 
 



 

 

CHAPTER 4 

C O N T E X T  F R E E  G R A M M A R  

A context-free grammar is a collection of recursive rules 

employed to produce patterns of strings. A context-free grammar is 

capable of describing all regular languages and additional languages, but 

not all possible languages. Context-free grammars are an area of study in 

the fields of theoretical computer science, compiler design and 

linguistics. 

 
4.1 Motivation and Introduction 

Formal language theory and computer science use a context-free 

grammar (CFG) as a formalism to describe a language's syntax. A set of 

production rules define the replacement of symbols or non-terminals 

with sequences of other symbols and terminals. 

 
A Context Free Grammar is consisting of four components. They 

are finite set of non-terminals, finite set of terminals, set of productions 

and start symbol. 

 

4.2 Formal Definition of Context Free Grammars (CFG) 
• A CFG is a mathematical object, G, with four components,  

G = (N, T, P, S) 

where 

N is a nonempty, finite set of non-terminal symbols 

T is a finite set of terminal symbols 

P is a set of grammar rules as per below form 

A → α    where A  N and   α  (N  T)* 
S is the start symbol S ∈ N  

 

• Example 
Let G = ({S},{0,1,},P,S) be a CFG, where productions are  

S→ 0S0/1S1/ 

 

 



 

 

CHAPTER 5 

P U S H D O W N  A U T O M A T A  

A pushdown automaton (PDA) is a type of automaton, which is a 

mathematical model of computation. PDAs are used to recognize 

context-free languages, which are languages generated by context-free 

grammars. A PDA consists of Input tape, Finite control, Stack. The 

transitions of a PDA are determined by the current state, the symbol read 

from the input tape, and the symbol popped from the stack. Based on 

these factors, the PDA can change its state, push symbols onto the stack, 

or pop symbols from the stack. PDAs can be in one of three states: 

accepting, rejecting, or non-accepting. The PDA accepts the input string 

if, after processing the entire string, it is in an accepting state. Otherwise, 

it rejects the input string. 

 

5.1 Formal Definition of Pushdown Automaton 
A pushdown automaton consists of seven tuples  
M = (Q, Σ, Γ, δ, q0, Z0, F), where  

Q - Finite set of states  
Σ - Finite input alphabet  
Γ - Finite alphabet of pushdown symbols  
δ - Transition function Q × (Σ ∪ {ε}) × Γ → Q×Γ  
q0 - start / initial state q0  Q 
Z0 - start symbol on the pushdown Z0  Γ 
F  - set of final states F  Q 

 
5.2 Model of PDA  

Pushdown Automata is a finite automaton with extra memory 

called stack which helps Pushdown automata to recognize Context Free 

Languages. A DFA can remember a finite amount of information, but a 

PDA can remember an infinite amount of information. 

The PDA consists of a finite set of states, a finite set of input 

symbols and a finite set of push down symbols. The finite control has 

control of both the input tape and the push down store. The stack head 

scans the top symbol of the stack. 
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9. (q1, a, a) = {(q1, )} 
10. (q1, b, b) = {(q1, )} 

 
11. (q1, ,  ) = {(q2, )}  -  

 
Transition Diagram: 

 
 
 

  
 
 
 
 
 
 

 
7. Design a PDA that accepts L = {wwR ; w  (0+1)*} accepted by final 

state. (or) Design a PDA for even length palindrome. 
 

Solution: 
Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 
 
The productions are: 

1. (q0, 0, z0) = {(q0, 0z0) 
2. (q0, 1, z0) = {(q0, 1z0) 
3. (q0, 0, 0) = {(q0, 00) 
4. (q0, 1, 1) = {(q0, 11) 
5. (q0, 0, 1) = {(q0, 01) 
6. (q0, 1, 0) = {(q0, 10) 

 
7. (q0, , 0) = {(q1, 0)} 
8. (q0, , 1) = {(q1, 1)} 

 
9. (q1, 0, 0) = {(q1, )} 
10. (q1, 1, 1) = {(q1, )} 

 
11. (q1, , z0 ) = {(q2, z0)}  -  

 
Transition Diagram: 

 
 
 

  
 
 
 
 

Accept the empty stack 

Pop operations 

Push operations 

Accept the separator ‘’ 

Accept the Final State 

Pop operations 



 

 

CHAPTER 6 

T U R N I N G  M A C H I N E  

A Turing machine (TM) is a theoretical model of computation 

introduced by Alan Turing in 1936. It is an accepting device which 

accepts the languages (recursively enumerable set) generated by type 0 

grammars.  

 

A Turing Machine (TM) is a mathematical model which consists of  

o An infinite length tape divided into cells; each cell contains 
a symbol from some finite alphabet. The alphabet contains a 
special blank symbol (here written as '0') and one or more 
other symbols. The tape is assumed to be arbitrarily 
extendable to the left and to the right. 

o A head which reads the input tape.  
o A state register stores the state of the Turing machine.  
o After reading an input symbol, it is replaced with another 

symbol, its internal state is changed, and it moves from one 
cell to the right or left. If the TM reaches the final state, the 
input string is accepted, otherwise rejected. 

 
6.1 Formal Definition of Turing Machine 

A TM can be formally described as a 7-tuple M = (Q, , Γ, δ, q0, B, F)  
       where 

Q is a finite set of states 
 is the input alphabet 
Γ is the tape alphabet 
δ is a transition function; δ: Q × Γ → Q × Γ × {L, R}. 
q0 is the initial state, q0  Q 
B is the blank symbol, B  Γ 
F is the set of final states, F  Q 

 
6.2 Model of Turing Machine (TM) 

Turing Machine has three components:  
i. Finite state control:  

▪ It is in one of a finite number of states at each 
instant, and is connected to the tape head.  
 



 

 

CHAPTER 7 

U N D E C I D A B I L I T Y  

Undecidability is a concept in mathematics and computer 

science that refers to situations where there is no algorithmic way to 

determine whether a given statement is true or false within a particular 

formal system. Undecidability is a concept in mathematics and 

computer science that refers to situations where there is no algorithmic 

way to determine whether a given statement is true or false within a 

particular formal system. This concept often arises in the study of formal 

languages, logic, and computational theory. Alan Turing famously 

proved the halting problem, a classic example of undecidability, in 1936. 

The halting problem asks whether a given program, when provided with 

a particular input, will eventually halt (i.e., stop running). Turing showed 

that it is impossible to write a general algorithm that can decide whether 

any arbitrary program will halt or run forever.  

 

Recursive Language: A language is recursive if there exists a Turing 

Machine that accepts every string of the language and reject every string 

that is not in the language. 

 

 

 

 

Recursively Enumerable Language: A language is recursive enumerable 

if there exists a Turing Machine that accepts every string of the language 

and does not accept strings that are not in the language. The strings that 

are not in the language may be rejected and it may cause the TM to go 

to an infinite loop. 
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