
T H E O R Y O F

C O M P U T A T I O N

Dr. D. Jagadeesan

JVK Publications

(JVK Printers)

Vengikkal, Tiruvannamalai

Tamil Nadu, India

T H E O R Y O F

C O M P U T A T I O N

Dr. D. Jagadeesan

The Apollo University, Chittoor, Andhra Pradesh

JVK Publications

(JVK Printers)

Vengikkal, Tiruvannamalai

Tamil Nadu, India

Theory of Computation

2

Copyright © 2024 JVK Publications

JVK Printers

1799, Sri Raghavendra Nagar,

Vengikkal, Tiruvannamalai,

Tamil Nadu, India - 606604

While the publisher and author have used their best efforts in preparing this

book, they make no representations or warranties with respect to the

accuracy or completeness of the contents of this book. The authors and

publishers have attempted to trace the copyrights holders of all material

reproduced in this publication and apologize to copy right holders if

permission to publish in this form bas not been obtained. If any copyright

material has not been acknowledged please write and let us know so we

may rectify in any future reprint.

No part of this publication may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, scanning, or otherwise, without either the prior

written permission of the Publisher, or author.

Price: ₹150.00

First Edition, 2024

ISBN 978-93-5620-409-6

Dr. D. Jagadeesan

3

I N D E X

Chapter Contents Page No

1 Finite Automata

1.1 History
1.2 Finite State Systems
1.3 Applications of Finite Automata
1.4 Basic Terms and Definitions
1.5 Finite Automata without Output
1.6 DFA vs NFA
1.7 Problems for Finite Automata
1.8 Equivalence of NFA and DFA
1.9 Equivalence of NFA with and

without  transitions
1.10 Minimization of DFA
1.11 Finite Automata with Output
1.12 Transforming Mealy Machine into

Moore Machine
1.13 Transforming Moore Machine into

Mealy Machine

6
6
7
8

10
14
14
17

22
28
32

35

40

2 Regular Expression

2.1 Regular language
2.2 Regular Expression
2.3 Relationship between Finite

Automata and Regular Expression
2.4 Equivalence of Regular Expression

and Finite Automata
2.5 Regular Expression from DFA
2.6 Pumping Lemma
2.7 Closure Properties for Regular

Language

43
43

46

46
51
59

62

3 Regular Grammar

3.1 Chomsky Hierarchy
3.2 Scope of Each type of Grammar
3.3 Regular Grammer
3.4 Properties of Regular Grammars

64
65
66
67

Theory of Computation

4

3.5 Types of Regular Grammars
3.6 Left linear Grammar into Right

Linear Grammar
3.7 Equivalence of Regular Grammar

and Finite Automata
3.8 Finite Automata to Right Linear

Grammar
3.9 Right Linear Grammar to Finite

Automata
3.10 Finite Automata to Left Linear

Grammar
3.11 Left Linear Grammar to Finite

Automata

67

67

69

69

74

77

80

4 Context Free Grammar

4.1 Motivation and Introduction
4.2 Formal Definition
4.3 Conversion of CFG into CFL
4.4 Conversion of CFL into CFG
4.5 Derivation
4.6 Derivation Tree
4.7 Ambiguity
4.8 Simplification of CFG
4.9 Normal Forms

85
85
86
87
89
92
94
95

100

5 Pushdown Automata

5.1 Formal Definition
5.2 Model of PDA
5.3 Acceptance by PDA
5.4 Equivalence of Acceptance of PDA

from Empty Stack to Final State
5.5 Equivalence of Acceptance of PDA

from Final State to Empty Stack
5.6 Design of PDA
5.7 Equivalence of PDA and CFL
5.8 Deterministic PDA
5.9 Non- Deterministic PDA
5.10 Pumping Lemma
5.11 Closure Properties of CFL

108
108
109

110

112
113
119
128
128
129
130

Dr. D. Jagadeesan

5

6 Turing Machine

6.1 Formal Definition
6.2 Model of Turing Machine
6.3 Design of TM
6.4 Computable Languages and

Functions
6.5 Modification of Turing Machine

131
131
133

140
144

7 Undecidability

7.1 Properties of Recursive and
Recursively Enumerable Languages

7.2 Post Correspondence Problem
(PCP)

7.3 Rice Theorem
7.4 Halting Problem

150

152
154
156

CHAPTER 1

F I N I T E A U T O M A T A

Formal languages and Automata Theory describes the

basic ideas and models underlying computing. It suggests various

abstract models of computation, represented mathematically.

1.1 History

Mathematicians and logicians made major contributions to the

field of finite automata as early as the 20th century. The concept was first

introduced by David Hilbert in 1927, but it was the work of Alonzo

Church and Alan Turing in the 1930s that laid the theoretical foundation

for finite automata as models of computation. In the mid-20th century,

the renowned mathematician and computer scientist John von

Neumann made substantial contributions to automata theory. The

formalization of deterministic and nondeterministic finite automata

emerged in the 1950s, with notable contributions from Michael O. Rabin

and Dana Scott. Finite automata became integral to theoretical computer

science, playing a crucial role in formal language theory and compiler

design. The development of finite automata reflects a collaborative

effort by pioneers in mathematics and computer science to understand

the fundamental principles of computation and lay the groundwork for

subsequent advances in the field.

1.2 Finite State systems

A finite automaton can also be thought of as the device shown below

consisting of a tape and a control circuit which satisfy the following

conditions:

✓ The tape has the left end and extends to the right without an end.

✓ The tape is dividing into squares in each of which a symbol can

be written prior to the start of the operation of the automaton.

✓ The tape has a read only head.

Dr. D. Jagadeesan

7

✓ The head is always at the leftmost square at the beginning of the

operation.

✓ The head moves to the right one square every time it reads a

symbol.

It never moves to the left. When it sees no symbol, it stops and

the automaton terminates its operation.

✓ There is a finite control which determines the state of the

automaton and also controls the movement of the head.

1.3 Applications of Finite Automata

✓ Finite automata are extensively used in compilers for lexical

analysis, the first phase of language processing.

✓ It is useful in text processing and searching applications.

✓ Finite state machines are utilized to model and analyze network

protocols.

✓ Finite state machines are used to design and model digital

circuits.

✓ Finite automata contribute to pattern recognition tasks, where

recognizing specific sequences or patterns in data is essential.

✓ Finite state machines are employed to model and control the

behavior of robots.

✓ Finite state machines play a crucial role in designing the control

units of digital systems within these circuits.

✓ Finite state machines and automata models are used in designing

decision-making processes for AI agents.

✓ Finite state machines are commonly used in game development

for modeling the behavior of non-player characters.

Dr. D. Jagadeesan

15

3. Design FA to accept the string that always ends with 00.

4. Design FA to check whether a given unary number is divisible by 3.

5. Design FA to check whether a given binary number is divisible by 3.

6. Obtain the  closure of states q0 and q1 in the following NFA with 

transition.

Solution:

 - CLOSURE {q0} = {q0, q1, q2}

 - CLOSURE {q1} = {q1, q2}

q0 q1

q2

a b c




Dr. D. Jagadeesan

23

Now we will show that

 δʹ(p,a) = δ(q0,wa)

But,

 δʹ(p,a) = δʹ(q,a) = δʹʹ(q,a) as p = δʹʹ(q0,w)

We have

δʹʹ(q,a) = δʹʹ(q0,wa)

Thus, by definition of δʹʹ

δʹ(q0, wa) = δʹʹ(q0,wa)

1.9.1 Problems for Converting NFA with  into NFA without 

1. Construct NFA without  from NFA with .

Solution:

Find the ε – closure of all states:

ε – closure (q0) = {q0, q1, q2}

ε – closure (q1) = {q1, q2}

ε – closure (q2) = {q2}

Compute δʹ function:

 δʹ(q0,0) = δʹʹ (q0,0) = ε – closure (δ(δʹ(q0,ε),0))

 = ε – closure (δ({q0,q1,q2},0))

 = ε – closure (q0) = {q0,q1,q2}

 δʹ(q0,1) = δʹʹ (q0,1) = ε – closure (δ(δʹ(q0,ε),1))

 = ε – closure (δ({q0,q1,q2},1))

 = ε – closure (q1) = {q1,q2}

 δʹ(q0,2) = δʹʹ (q0,2) = ε – closure (δ(δʹ(q0,ε),2))

 = ε – closure (δ({q0,q1,q2},2))

 = ε – closure (q2) = {q2}

 δʹ(q1,0) = δʹʹ (q1,0) = ε – closure (δ(δʹ(q1,ε),0))

 = ε – closure (δ({q1,q2},0))

 = ε – closure () = {}

ε – closure (q0)

= { q0,q1,q2}

CHAPTER 2

R E G U L A R E X P R E S S I O N

A regular expression plays a crucial role in describing

languages. Let’s explore what regular expressions are and how

they relate to regular languages.

2.1 Regular Language

A language is called regular language if there exists a finite

automaton that recognizes it. For example, finite automaton M

recognizes the language L if L = {w | M accepts w}.

2.1.1 Operations on Regular Languages
Let A and B be languages. We define regular language operations

union, concatenation and closure as follows:

Union : A ∪ B = {x | x ∈ A ∨ x ∈ B}

Concatenation : A ◦ B = {xy | x ∈ A ∧ y ∈ B}

Closure : A* = {x1x2 . . . xk | k ≥ 0 ∧ xi ∈ A, 1 ≤ i ≤ k}

2.2 Regular Expression

A regular expression is a string that defines a finite pattern of strings

or symbols. Each pattern corresponds to a set of strings, serving as a

name for that set.

Regular expressions are used to describe languages, and they allow

us to express rules for constructing valid strings within those languages.

2.2.1 Operations on Regular Expressions
Let Σ be an alphabet. The regular expressions over Σ and the sets that

they denote are defined recursively as follows:

✓ Ø is a regular expression and denotes the empty set {}.

✓  is a regular expression and denotes the set {}.

Theory of Computation

54

2.5.1.2 Problems
1. Covert the given finite automata into a regular expression

using substitution method.

Solution:

 r = 𝑟12
3 + 𝑟13

3

𝑟𝑖𝑗
0 = {

𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛
𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛 + 

 [(𝑞𝑖, 𝑎) = 𝑞𝑗] 𝑖𝑓 𝑖 ≠ 𝑗
[(𝑞𝑖, 𝑎) = 𝑞𝑗] 𝑖𝑓 𝑖 = 𝑗

K= 0

𝑟11
0 =  𝑟21

0 = 0 𝑟31
0 = Ø

𝑟12
0 = 0 𝑟22

0 =  𝑟32
0 = 0 + 1

𝑟13
0 = 1 𝑟23

0 = 1 𝑟33
0 = 

K= 1

𝑟𝑖𝑗
𝑘 = 𝑟𝑖𝑗

𝑘−1 + 𝑟𝑖𝑘
𝑘−1 (𝑟𝑘𝑘

𝑘−1)* 𝑟𝑘𝑗
𝑘−1

𝑟11
1 = 𝑟11

0 + 𝑟11
0 (𝑟11

0)* 𝑟11
0 =  +  ()* = + = 

𝑟12
1 = 𝑟12

0 + 𝑟11
0 (𝑟11

0)* 𝑟12
0 = 0+  ()* 0 = 0+0=0

𝑟13
1 = 𝑟13

0 + 𝑟11
0 (𝑟11

0)* 𝑟13
0 = 1 +  ()* 1 = 1+1 =0

𝑟21
1 = 𝑟21

0 + 𝑟21
0 (𝑟11

0)* 𝑟11
0 = 0+ 0 ()* = 0+0=0

𝑟22
1 = 𝑟22

0 + 𝑟21
0 (𝑟11

0)* 𝑟12
0 =  + 0 ()*0 = +00

𝑟23
1 = 𝑟23

0 + 𝑟21
0 (𝑟11

0)* 𝑟13
0 = 1 + 0 ()*1 = 1+01

CHAPTER 3

R E G U L A R G R A M M A R

Language: “A language is a collection of sentences of finite length all

constructed from a finite alphabet of symbols.”

Grammar: “A grammar can be regarded as a device that enumerates

the sentences of a language.”

A formal grammar is a quad-tuple G = (N, T, P, S)

where

N is a finite set of non-terminals

T is a finite set of terminals

P is a finite set of production rules of the form α A β → α γ β

 Where α, β, γ  (NT)∗, A  N ≠ ε
S  N is the start symbol

3.1 Chomsky Hierarchy (Type of Grammars)

Class Grammars Languages Automaton Rules
Type-0 Unrestricted

Grammar
Recursively
Enumerable
Language

Turing
Machine

α → β
α, β  (NT)∗
α ≠ ε

Type-1 Context
Sensitive
Grammar

Context
Sensitive
Language

Linear
Bounded
Automaton

α A β → α γ β

α, β, γ (NT)∗
A  N ≠ ε

Type-2 Context-
free
Grammar

Context-
free
Language

Pushdown
automaton

A → α
where A  N
α  (N  T)∗

Type-3 Regular
Grammar

Regular
Language

Finite
automaton

A → α B
A → B α
A → α
where A, B N and
α T*

CHAPTER 4

C O N T E X T F R E E G R A M M A R

A context-free grammar is a collection of recursive rules

employed to produce patterns of strings. A context-free grammar is

capable of describing all regular languages and additional languages, but

not all possible languages. Context-free grammars are an area of study in

the fields of theoretical computer science, compiler design and

linguistics.

4.1 Motivation and Introduction

Formal language theory and computer science use a context-free

grammar (CFG) as a formalism to describe a language's syntax. A set of

production rules define the replacement of symbols or non-terminals

with sequences of other symbols and terminals.

A Context Free Grammar is consisting of four components. They

are finite set of non-terminals, finite set of terminals, set of productions

and start symbol.

4.2 Formal Definition of Context Free Grammars (CFG)
• A CFG is a mathematical object, G, with four components,

G = (N, T, P, S)

where

N is a nonempty, finite set of non-terminal symbols

T is a finite set of terminal symbols

P is a set of grammar rules as per below form

A → α where A  N and α  (N  T)*
S is the start symbol S ∈ N

• Example
Let G = ({S},{0,1,},P,S) be a CFG, where productions are

S→ 0S0/1S1/

CHAPTER 5

P U S H D O W N A U T O M A T A

A pushdown automaton (PDA) is a type of automaton, which is a

mathematical model of computation. PDAs are used to recognize

context-free languages, which are languages generated by context-free

grammars. A PDA consists of Input tape, Finite control, Stack. The

transitions of a PDA are determined by the current state, the symbol read

from the input tape, and the symbol popped from the stack. Based on

these factors, the PDA can change its state, push symbols onto the stack,

or pop symbols from the stack. PDAs can be in one of three states:

accepting, rejecting, or non-accepting. The PDA accepts the input string

if, after processing the entire string, it is in an accepting state. Otherwise,

it rejects the input string.

5.1 Formal Definition of Pushdown Automaton
A pushdown automaton consists of seven tuples
M = (Q, Σ, Γ, δ, q0, Z0, F), where

Q - Finite set of states
Σ - Finite input alphabet
Γ - Finite alphabet of pushdown symbols
δ - Transition function Q × (Σ ∪ {ε}) × Γ → Q×Γ
q0 - start / initial state q0  Q
Z0 - start symbol on the pushdown Z0  Γ
F - set of final states F  Q

5.2 Model of PDA

Pushdown Automata is a finite automaton with extra memory

called stack which helps Pushdown automata to recognize Context Free

Languages. A DFA can remember a finite amount of information, but a

PDA can remember an infinite amount of information.

The PDA consists of a finite set of states, a finite set of input

symbols and a finite set of push down symbols. The finite control has

control of both the input tape and the push down store. The stack head

scans the top symbol of the stack.

Dr. D. Jagadeesan

117

9. (q1, a, a) = {(q1, )}
10. (q1, b, b) = {(q1, )}

11. (q1, , ) = {(q2, )} -

Transition Diagram:

7. Design a PDA that accepts L = {wwR ; w  (0+1)*} accepted by final

state. (or) Design a PDA for even length palindrome.

Solution:
Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, 0, z0) = {(q0, 0z0)
2. (q0, 1, z0) = {(q0, 1z0)
3. (q0, 0, 0) = {(q0, 00)
4. (q0, 1, 1) = {(q0, 11)
5. (q0, 0, 1) = {(q0, 01)
6. (q0, 1, 0) = {(q0, 10)

7. (q0, , 0) = {(q1, 0)}
8. (q0, , 1) = {(q1, 1)}

9. (q1, 0, 0) = {(q1, )}
10. (q1, 1, 1) = {(q1, )}

11. (q1, , z0) = {(q2, z0)} -

Transition Diagram:

Accept the empty stack

Pop operations

Push operations

Accept the separator ‘’

Accept the Final State

Pop operations

CHAPTER 6

T U R N I N G M A C H I N E

A Turing machine (TM) is a theoretical model of computation

introduced by Alan Turing in 1936. It is an accepting device which

accepts the languages (recursively enumerable set) generated by type 0

grammars.

A Turing Machine (TM) is a mathematical model which consists of

o An infinite length tape divided into cells; each cell contains
a symbol from some finite alphabet. The alphabet contains a
special blank symbol (here written as '0') and one or more
other symbols. The tape is assumed to be arbitrarily
extendable to the left and to the right.

o A head which reads the input tape.
o A state register stores the state of the Turing machine.
o After reading an input symbol, it is replaced with another

symbol, its internal state is changed, and it moves from one
cell to the right or left. If the TM reaches the final state, the
input string is accepted, otherwise rejected.

6.1 Formal Definition of Turing Machine

A TM can be formally described as a 7-tuple M = (Q, , Γ, δ, q0, B, F)
 where

Q is a finite set of states
 is the input alphabet
Γ is the tape alphabet
δ is a transition function; δ: Q × Γ → Q × Γ × {L, R}.
q0 is the initial state, q0  Q
B is the blank symbol, B  Γ
F is the set of final states, F  Q

6.2 Model of Turing Machine (TM)

Turing Machine has three components:
i. Finite state control:

▪ It is in one of a finite number of states at each
instant, and is connected to the tape head.

CHAPTER 7

U N D E C I D A B I L I T Y

Undecidability is a concept in mathematics and computer

science that refers to situations where there is no algorithmic way to

determine whether a given statement is true or false within a particular

formal system. Undecidability is a concept in mathematics and

computer science that refers to situations where there is no algorithmic

way to determine whether a given statement is true or false within a

particular formal system. This concept often arises in the study of formal

languages, logic, and computational theory. Alan Turing famously

proved the halting problem, a classic example of undecidability, in 1936.

The halting problem asks whether a given program, when provided with

a particular input, will eventually halt (i.e., stop running). Turing showed

that it is impossible to write a general algorithm that can decide whether

any arbitrary program will halt or run forever.

Recursive Language: A language is recursive if there exists a Turing

Machine that accepts every string of the language and reject every string

that is not in the language.

Recursively Enumerable Language: A language is recursive enumerable

if there exists a Turing Machine that accepts every string of the language

and does not accept strings that are not in the language. The strings that

are not in the language may be rejected and it may cause the TM to go

to an infinite loop.

JVK Publications

(JVK Printers)

Vengikkal, Tiruvannamalai

Tamil Nadu, India

*send payment proof to 7904647133 after verification of payment publisher will send the softcopy of book

