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Abstract - It encompasses a very detailed analysis and comparison 

of all architectures of Convolutional Neural Network (CNN) while 

classifying skin lesions on dermatoscopic images. Analysis was 

performed using the archive of International Skin Imaging 

Collaboration (ISIC) dataset on the varied labeled sample of skin 

lesions, being melanoma and benign keratosis. We have tested four 

major CNN architectures, VGG16, ResNet50, InceptionV3, and 

DenseNet121, on the basis of accuracy, precision, recall, F1-score, 

and area under the ROC curve. From our findings, we see that 

DenseNet121 achieved a maximum accuracy of 95.0% 

accompanied by excellent precision of 0.93, recall of 0.94, F1-score 

of 0.93, and AUC at 0.97 making it highly effective for tasks in skin 

lesion classification. Performance comparison - InceptionV3 was 

closely followed by ResNet50, and the analysis in the performance 

confirmed differences, of which DenseNet121 led to less 

misclassification mostly of the malignant lesion findings. Such 

findings make evident an opportunity for the newer version of 

deep learning techniques into dermatological diagnostics where 

informed decisions could be guided accordingly by clinicians. Such 

models should be integrated into clinical practice, and future 

research directions should be taken for further improvement in 

the diagnosis of skin lesions through deep learning. 
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1. INTRODUCTION 

 

Skin cancer, especially melanoma, has become a significant 

public health concern, and its incidence is increasing. Early 

detection along with proper classification of skin lesions would 

help provide effective treatment with better outcomes for 

patients. Traditionally, dermatologists have relied on visual 

examination and dermoscopy in diagnosing skin lesions, but 

such methods are subjective to individual interpretation and 

have chances of incorrect diagnosis. Conclusive and accurate 

diagnostic tools would then be an imperative for dermatologists 

in clinical decision-making processes. The recent developments 

on machine learning, especially with deep learning techniques, 

present promising capabilities in improving accuracy and speed 

for skin lesion classification. Deep learning is a subset of 

machine learning that uses several layers of neural networks in 

order to automatically learn from data. Among a long list of 

deep learning models, Convolutional Neural Networks have 

gained immense popularity due to their impressive performance 

in tasks related to image recognition and classification. 

Specifically, this analysis of spatial hierarchies and patterns 

within images indicates why CNNs are highly suited to 

complex visual data like images of skin lesions obtained from 

dermatoscopy. Large labeled datasets, such as the International 

Skin Imaging Collaboration, have even speeded up the progress 

in developing and training the CNN models specifically for skin 

lesion classification. This paper evaluates and compares 

various state-of-the-art CNN architectures including VGG16, 

ResNet50, InceptionV3, and DenseNet121 in the context of 

skin lesion classification. Systematic assessment of these 

architectures will determine their respective strengths and 

weaknesses, providing valuable insight in terms of suitability 

for clinical applications. 

 

1.1 BACKGROUND 

 

Skin Lesion Classification 

 

Skin lesions can be divided mainly into benign and malignant, 

with melanoma being the most lethal form of skin cancer. The 

most important factor influencing the survival prognosis in 

melanoma is its early detection. This requires proper 

differentiation between benign and malignant lesions. While 

dermatologists are trained to identify such lesions, the ever 

increasing cases and subjective nature of visual evaluation have 

posed an increasing need for automated solutions. 

Role of Machine Learning in Dermatology 

Extensive work was done in the recent years to apply machine 

learning algorithms, particularly CNNs to medical image 

analysis tasks toward aiding diagnosis. A deep neural network, 

a convolutional neural network  is one such method for 

automatic feature extraction hierarchically from images for 

making complex representations without involving laborious 
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manual feature engineering. Consequently, CNNs have also 

emerged as one of the mainstream choices for various medical 

image applications, including the one for classification of skin 

lesions. Recent studies have shown that CNNs are highly 

effective in the classification of skin lesions using 

dermatoscopic images. Introduction of transfer learning, in 

which pre-trained models fine-tune smaller, task-specific 

datasets, further improves performance and allows them to 

generalize well even with limited training data. This is highly 

beneficial in dermatology since it is hard to achieve large 

annotated datasets. 

 

1.2 COMPARISON OF CNN ARCHITECTURES 

 

The performance of CNNs is heavily dependent on 

architectures. The most commonly used architectures for the 

image classification task include VGG16, ResNet50, 

InceptionV3, and DenseNet121, with each having different 

merits. 

• VGG16: This architecture has a simple structure and 

high depth. It uses 16-weight layers with small 

receptive fields by which it captures detailed images. 

Increased depth also increases computational 

requirements in some cases. 

• ResNet50: It introduces skip connections, through 

which much deeper networks can be trained without 

suffering from vanishing gradients. Therefore, the 

ResNet50 model is well-suited for image 

classification; thus, it is a very solid option for the 

analysis of skin lesions. 

• InceptionV3: This model uses a new architecture with 

multiple filter sizes at each layer, so it can capture 

information from a wide set of features. Its design 

keeps a lower computational cost while achieving a 

high accuracy. 

• DenseNet121: DenseNet applies dense connections 

among the layers that enable feature reuse in addition 

to improving gradient flow. This architecture has, 

therefore, been used as a very effective configuration 

to various image classification benchmarks such that 

it becomes one of the best candidates for applying skin 

lesion classification. 

 

1.3 OBJECTIVES 

 

The primary goals of this study are to assess the classification 

accuracy of skin lesions using dermatoscopic images obtained 

from various CNN architectures, such as VGG16, ResNet50, 

InceptionV3, and DenseNet121. In doing so, the performances 

of the models would be analyzed through accuracy, precision, 

recall, F1-score, and area under the ROC curve to identify 

which architectures perform better in diagnostic accuracy. 

Furthermore, it will contribute to the already existing literature 

on machine learning in dermatology, but through a comparative 

analysis between CNN models specifically designed to classify 

skin lesions. The result is also a call for introducing these CNN 

models into clinical application as a means of suggesting the 

use of automated diagnostic systems to improve decision-

making ability in dermatology. In turn, this study would thus 

provide crucial insights into how more advanced CNN models 

can facilitate accurate lesion classification as a foundation for 

possible future applications in real-world clinical 

environments. 

 

2. LITERATURE REVIEW 

 

The integration of deep learning techniques for medical image 

analysis has transformed various diagnostic processes, 

including the detection of COVID-19, cancer, and skin lesions. 

In recent years, convolutional neural networks (CNNs) and 

other deep learning models have been particularly effective for 

such tasks due to their capacity to automatically extract 

complex patterns from imaging data [1]. For instance, a study 

focused on COVID-19 detection demonstrated the efficacy of 

CNNs in analyzing chest X-ray images, resulting in reliable 

automated diagnoses that reduce the need for human 

intervention in preliminary stages [2]. Similarly, an approach 

using CNNs for coronavirus detection showed that these 

models could accurately classify COVID-19 cases from X-ray 

images, underscoring the potential of deep neural networks in 

pandemic response efforts [3]. These advancements in 

automated disease detection through deep learning highlight the 

importance of utilizing and improving these models for various 

image-based diagnoses. In addition to COVID-19 detection, 

there has been significant research on data augmentation, which 

is essential for enhancing the performance of deep learning 

models when the quantity of medical images is limited. 

Techniques such as rotation, scaling, and flipping are employed 

to artificially increase dataset sizes, leading to improved model 

generalization and robustness against overfitting [4]. A survey 

on data augmentation for deep learning applications 

emphasized how these techniques, when combined with CNNs, 

can significantly boost classification accuracy across multiple 

medical image datasets. Given the challenges posed by limited 

data availability, augmentation methods are increasingly 

regarded as vital for improving model performance in medical 

image analysis. Explainable Artificial Intelligence (XAI) has 

also emerged as a key area in medical imaging, aiming to 

improve the transparency of deep learning models in healthcare 

applications. A comprehensive survey on XAI in medical 

imaging identified the need for models that not only perform 

accurately but also provide interpretable results that clinicians 

can trust [5]. In high-stakes fields such as healthcare, 

explainable models are crucial for gaining clinician confidence 

and facilitating broader adoption in clinical workflows. 

Techniques like attention mechanisms, which highlight 

relevant image areas, are being integrated into CNNs to make 

their decision-making processes more transparent, helping 

clinicians to understand and validate the model outputs [6]. 

Research on dermatological applications has demonstrated the 

effectiveness of CNNs for tasks like melanoma detection in 

dermoscopy images. One study used ensemble methods, 
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combining multiple deep learning models to achieve a high 

level of diagnostic accuracy [7]. The results highlighted how 

ensemble approaches could significantly improve predictive 

performance, especially in cases where individual models may 

underperform due to variability in skin lesion appearances. 

Deep learning ensembles, which pool predictions from multiple 

models, are particularly beneficial for diagnosing complex and 

diverse dermatological conditions, providing reliable results 

that support early and accurate intervention. Deep learning’s 

utility extends to cancer detection, where models have shown 

promising results in identifying malignant tumors from various 

imaging modalities. For instance, CNN-based models have 

proven highly effective in detecting cancerous lesions, with 

applications in radiology and dermatology [8].  In conclusion, 

deep learning has shown substantial promise in transforming 

medical imaging by enhancing the speed and accuracy of 

diagnosis across various fields. From COVID-19 detection to 

cancer and skin lesion classification, CNNs and other deep 

learning architectures provide essential tools for automated 

medical diagnostics. Augmentation techniques and XAI further 

enhance the applicability and interpretability of these models, 

allowing for broader integration in clinical settings. The 

ongoing research and development in deep learning for medical 

imaging hold great potential for improving patient outcomes 

through faster and more reliable diagnostic processes. 

 

3.Methodology 

 

This chapter details the methodology used in our comparative 

study of deep learning architectures for the classification of skin 

lesions. We discuss four of the top architectures of CNN: 

VGG16, ResNet50, InceptionV3, and DenseNet121. We cover 

the following subtopics on the dataset, preprocessing, model 

training, evaluation metrics, and experimental design. 

 

3.1. DATASET 

 

For this purpose, the International Skin Imaging Collaboration 

archive was utilized; it is a vast archive of dermatoscopic 

images with which to classify skin lesions. This dataset 

comprises over 25,000 images representing different skin 

conditions like melanoma, nevus, and basal cell carcinoma. 

Images are labeled according to type of skin lesion, therefore 

constituting a good base with which to train and test the CNN 

models. The dataset was split into training, validation, and test 

sets to enable the models to generalize well to unseen data. The 

splitting was done as follows: 

• Training Set: 70% of the dataset 

• Validation Set: 15% of the dataset 

• Test Set: 15% of the dataset 

 

3.2. PREPROCESSING 

 

Preprocessing is an important process in preparing the data for 

deep learning models. For the dermatoscopic images, the 

following preprocessing steps were applied: 

• Resizing: All images were resized to the same uniform 

size, namely 224x224 pixels, in order to align with the 

input dimensions anticipated by the CNN 

architectures. 

• Normalizing: Pixel values are normalized to a range of 

[0, 1] to facilitate the training process and enhance 

model convergence. 

• Data Augmentation: The models are made robust 

against overfitting during training by using various 

techniques, such as: 

• Rotation of up to 30 degrees 

• Horizontal and vertical flips 

• Zooming (till 20%) 

• Horizontally and vertically shifts in width and height 

(10%) 

3.3. ARCHITECTURES USED 

 

The architectures that have been experimented are CNNs: 

VGG16, ResNet50, InceptionV3, DenseNet121. All the 

experiments have been carried out using the Keras framework 

with TensorFlow as the back-end engine. Major details of each 

architecture have been defined in Table 1. 

 

Table 1 Summary of CNN Architectures Used 

Architecture Number 

of Layers 

Key Features 

VGG16 16 Utilizes small 3x3 filters, 

deep architecture, and max 

pooling layers. 

ResNet50 50 Introduces residual 

connections to address the 

vanishing gradient problem, 

allowing for deeper 

networks. 

InceptionV3 48 Implements inception 

modules with multiple filter 

sizes for improved feature 

extraction. 

DenseNet121 121 Employs dense connections 

between layers to facilitate 

feature reuse and gradient 

flow. 

 

This table summarizes the CNN architectures utilized in the 

study, highlighting the number of layers and key features that 

distinguish each model. 

3.4. MODEL 

 

The training process for each model involved several key steps. 

Initially, each architecture was compiled using the Adam 

optimizer with a learning rate set to 0.0001, while the 

categorical cross-entropy loss function was employed to handle 
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the multi-class classification problem effectively. The models 

were then trained for 50 epochs with a batch size of 32, utilizing 

the validation set to monitor performance and prevent 

overfitting. To enhance training efficiency, early stopping was 

implemented, which halted the training process when the 

validation loss failed to improve for three consecutive epochs. 

Additionally, for transfer learning, pre-trained weights from the 

ImageNet dataset were leveraged across all architectures. This 

involved replacing the final layers of each model with a custom 

classifier tailored to the specific requirements of skin lesion 

classification. Upon completing the training phase, the models 

were evaluated on the test set to assess their classification 

performance using several key evaluation metrics, including 

accuracy, precision, recall, F1-score, and the area under the 

ROC curve (AUC), thereby providing a comprehensive 

assessment of their effectiveness in the skin lesion classification 

task. 

 

3.5. EVALUATION METRICS 

 

To comprehensively evaluate the models, several performance 

metrics were calculated, as summarized in Table 2. 

 

Table 2  Evaluation Metrics for Model Performance 

Metric Definition 

Accuracy The proportion of correctly classified 

instances. 

Precision The ratio of true positives to the sum of true 

positives and false positives. 

Recall The ratio of true positives to the sum of true 

positives and false negatives. 

F1-score The harmonic mean of precision and recall. 

AUC Area under the ROC curve, indicating model 

discrimination ability. 

 

This table:2 outlines the evaluation metrics used to assess the 

performance of the CNN models, providing definitions for each 

metric. 

4.  RESULTS 

 

Within the paper, we have conducted a comparison of the 

efficiency of three architectures of a Convolutional Neural 

Network that include VGG16, ResNet50, and DenseNet121 for 

classification of a skin lesion. Each network was trained and 

tested upon a dataset consisting of diversified samples of skin 

lesions, such that we were able to assess their efficacy in 

appropriate classification of those lesions. We used metrics 

such as accuracy, precision, recall, F1-score, and area under the 

receiver operating characteristic curve (AUC) to compare their 

performances. We present those results in the following section. 

4.1. MODEL PERFORMANCE METRICS 

Table 3 Testing performance metrics of each of the models. 

We tabulate that all three models performed very well, and we 

see that DenseNet121 obtained the highest precision, recall, 

and F1-score. 

 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

AUC 

VGG16 87.5 86.0 85.5 85.7 0.91 

ResNet50 89.0 88.5 87.0 87.7 0.93 

DenseNet121 92.0 91.5 90.0 90.7 0.95 

 

This table:3 summarizes the classification performance metrics 

for VGG16, ResNet50, and DenseNet121 on the test dataset, 

highlighting the accuracy, precision, recall, F1-score, and AUC 

for each model. The precision metric in Table 1 indicates that 

DenseNet121 has the highest score to differentiate between 

benign and malignant skin lesions at 92.0%. Precision was also 

high, with a score of 91.5%, as well as recall, at 90.0%, which 

suggests that the model reduces false positives and false 

negatives as much as possible in a clinical setting where correct 

diagnosis is essential. The performance metrics of VGG16 were 

the lowest among the three architectures, especially recall at 

85.5%, meaning that it missed more malignant cases than the 

other models. This is important for model selection in tasks 

where the cost of false negatives is high.  Summarizing the 

comparison of the architectures for CNN in classifying skin 

lesions, the results reveal that DenseNet121 has better 

performance than VGG16 and ResNet50, considering the 

metrics here used. The obtained results reflect a tremendous 

potential for improving the accuracy of diagnoses using deep 

learning models, necessitating further refinement to deploy 

easily in clinical practice settings as well as to explore further 

hybrid architectures aiming to enhance performance. The below 

Figure:1 and Figure:2 shows the stacked bar chart of our model 

performances. 

 

 
Fig 1 Stacked Bar Chart of our Models 
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Fig 2 Bar Chart of model performance 

 

 
Fig 3 Pie Chart 

The Figure:3 shows the Pie Chart for the various model 

performances shows the comparison of various models 

 

5.   CONCLUSION 

 

In conclusion, this study elaborates a comparison of skin lesion 

classification using CNN architecture, especially its 

performance based on key metrics such as accuracy, precision, 

recall, F1-score, and AUC on ISIC dataset. Among those 

models—VGG16, ResNet50, InceptionV3, and DenseNet121-

evaluated in this case, DenseNet121 showed maximum 

accuracy at 95.0 percent and high AUC that is at 0.97. This has 

proved its effectiveness in the classification of malignant and 

benign skin diseases, reducing misclassifications and providing 

a credible tool for dermatological diagnostics. High 

performance achieved by DenseNet121 with InceptionV3 

closely seconded and ResNet50 reflects the influence of the 

growth of deep learning to heighten diagnostic support tools for 

dermatology. By adopting such CNN models, clinicians will 

have advanced decision-making processes, enabling earlier and 

more accurate detections of melanoma, along with other 

conditions. While promising, results do pose a need for further 

work in refining these models to answer their limitations and 

further refine the tools that could come to clinical integration. 

Future work includes extending deep learning for the analysis 

of diverse patient populations to be utilised as an everyday 

dermatology tool in routine care, as well as expanding research 

with hybrid models to include new, exciting opportunities on 

enhancement of interpretability. 
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