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Abstract - Cancer is a lethal disease stemming from genetic 

anomalies and biochemical irregularities, presents a major global 

health challenge, with lung and colon cancers being significant 

contributors to morbidity and mortality. Timely and precise 

cancer detection is crucial for optimal treatment decisions, and 

machine learning and deep learning techniques offer a promising 

solution for expediting this process. In this research, a pre-trained 

neural network, specifically AlexNet, was fine-tuned with 

modifications to four layers to adapt it to a dataset comprising 

histopathological images of lung and colon tissues. Additionally, a 

Bayesian optimization approach was employed for 

hyperparameter tuning in Convolutional Neural Networks 

(CNNs) to enhance recognition accuracy while maintaining 

computational efficiency. The research utilized a comprehensive 

dataset divided into five classes, and in cases of suboptimal results, 

a Counteracting Suboptimal Image Processing (CSIP) strategy 

was applied, focusing on improving images of underperforming 

classes to reduce processing time and effort. 
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1. INTRODUCTION  

Cancer prevention is a crucial aspect in the battle against 

cancer, underscoring the significance of early diagnosis 

across all cancer types. However, experts view the precise 

identification of cancer types and the swift generation of 

results as challenging and time-consuming. To address these 

challenges, it is imperative to stay abreast of technological 

advancements and incorporate them into the diagnostic 

process. It's worth noting that each optimization algorithm 

may not consistently yield the initially targeted point or 

population with the best features. 

Cancer manifests as the uncontrollable growth of abnormal 

cells in any organ or tissue of the body, representing a 

leading cause of death globally. In 2018 alone, cancer 

accounted for an estimated 9.6 million deaths, or one in 

every six deaths. Lung cancer, comprising both small cell 

and non-small cell types, contributed to 2.06 million cases 

and 1.76 million deaths. Colorectal cancer, covering both 

colon and rectal cancer, constituted 1.80 million cases and 

783,000 deaths. 

Lung cancer is categorized into small-cell lung cancer 

(SCLC) and non-small cell lung cancer (NSCLC). SCLC, 

comprising 15% of total cases, is a highly aggressive tumour 

with neuroendocrine characteristics. NSCLC, constituting 

the remaining 85%, further divides into adenocarcinoma, 

squamous cell carcinoma, and large cell carcinoma. 

Colorectal cancer, specifically adenocarcinoma, represents 

96% of all cases and encompasses both colon and rectal 

cancer. Recent advancements involve digitizing entire tissue 

or cell slides using scanners, resulting in a plethora of whole 

slide images (WSIs). Machine learning algorithms are then 

applied to analyze these WSIs for diagnostic purposes. 

1.1 Transfer Learning Using Pre-Trained ALEXNET 

Model  

Transfer Learning is a method that leverages an existing 

model to transfer knowledge from one domain to another. 

This technique is especially useful for domain adaptation 

and improving the accuracy of models trained on smaller 

datasets. The effectiveness of transfer learning depends on 

several factors, such as the similarity between your dataset 

and the dataset used to train the original model, the size of 

your dataset, and the available computational resources. The 

closer the match between your dataset and the one used in 

the original model, the higher the likelihood that the learned 

parameters and architecture of the model will be beneficial 

for your data. 

In the paper, we applied transfer learning to develop 

convolutional neural networks (CNNs) for cancer 

classification. We specifically focused on a form of transfer 
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learning that involves fine-tuning parts of an existing model 

to better suit our dataset. This process entails modifying 

certain parameters of the model while keeping others 

unchanged. Initially, we trained an AlexNet Model from 

scratch with our dataset, adjusting all the parameters. In the 

subsequent phase, we evaluated the performance of a 

classifier by fine-tuning an AlexNet model that was 

previously trained on the ImageNet Dataset. This step 

involved replacing and retraining the parameters of the 

output, fully-connected layer of the pre-trained model, while 

the remaining layers were left unchanged. By doing so, we 

aimed to enhance the model's ability to classify cancer 

effectively, using the foundational learning from the 

ImageNet Dataset as a starting point. 

1.2 Background of Convolutional Neural Networks 

A Convolutional Neural Network (CNN) is a specialized 

type of Neural Network designed for image processing and 

classification. Its input consists of pixel values from an 

image presented in vector/matrix form. The CNN processes 

this input through a series of layers and generates a 

classification for the image. 

The layers in Convolutional Neural Networks typically 

include four types: 

1. Convolutional Layer: This layer identifies patterns in the 

image by passing its representative matrix through learnable 

filters/kernels, each representing distinct visual features in 

the image. These filters slide over the image based on 

specified strides, producing individual feature maps. The 

layer's final output is a transformation of the original image, 

comprising all the stacked feature maps. 

2. Rectified Linear Unit Layer (ReLU): This non-linear 

activation function, denoted as f(x) = max(x,0), transforms 

the output elements of the convolutional layer. By replacing 

negative values with 0 without altering the shape, ReLU 

adjusts the output to a range from 0 to infinity. 

3. Pooling Layer: This layer conducts down-sampling along 

the spatial dimensions of the image, reducing its 

representation size. By diminishing the number of features 

in the CNN, the model enhances computational efficiency 

while preserving key image features. 

4. Fully-Connected Layer: Unlike the local connections 

made by the convolutional layer, each node in a Fully-

Connected Layer establishes connections with all nodes in 

the preceding layer. 

1.3 Evolution of Pre-Trained Models 

Before the advent of Convolutional Neural Networks 

(CNNs), image processing primarily revolved around 

techniques like edge detection and other methods for 

extracting features based on raw pixel information. 

Subsequently, significant advancements in CNN 

architectures and increased computer processing power have 

substantially elevated the accuracy of CNNs in image 

processing. 

While various pre-trained models exist, our focus centered 

on AlexNet. This choice stems from AlexNet being the 

initial prominent model to incorporate the convolutional 

layers defining a CNN. This decision aimed to provide us 

with a comprehensive understanding of the construction and 

functioning of CNN models. Additionally, our 

computational constraints influenced our choice, as training 

a larger or deeper model like VGG16 would demand more 

computational power than was available. Nevertheless, the 

use of transfer learning serves to significantly mitigate the 

computational expense associated with constructing and 

training a CNN. 

1.4 ALEXNET 

Developed in 2012, AlexNet marked a significant 

advancement in CNN evolution. Not only did it emerge as 

the victor in the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) competition of that year, but it also 

boasted an error rate approximately half that of its 

competitors. The key innovations encompassed training on 

multiple GPUs, employing augmented versions of image 

data for training, adopting the ReLU activation function, 

incorporating overlapping pools, and implementing dropout. 

AlexNet's architecture consists of a total of 60,000 

parameters distributed across eight layers, comprising five 

convolutional layers and three fully connected layers. 

Further innovations included training on two GPUs and 

incorporating augmented versions of images (flipped, 

scaled, noised, etc.) for training purposes. The model also 

embraced ReLU (Rectified Linear Unit) activation 

functions, departing from the standard tanh (hyperbolic 

tangent) at the time. This adjustment not only reduced the 

training time but also served as a solution to the "vanishing 

gradient" problem. The pooling layers introduced a stride (in 

AlexNet, with a length of 4 pixels), resulting in an overlap 

between local receptive fields and significantly minimizing 

model errors. 

 

Figure 1 AlexNet Model from: Alex Krizhevsky, Ilya Sutskever, 

and Geoffrey E. Hinton. “ImageNet classification with deep 

convolutional neural networks 

https://dl.acm.org/doi/pdf/10.1145/3065386
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1.5 Bayesian Optimization Algorithm 

The Bayesian optimization algorithm seeks to minimize a 

scalar objective function f(x) over a bounded domain, where 

x represents the input. This function may be deterministic or 

stochastic, implying that it can yield varying outcomes when 

assessed at the same point x. 

1.5.1 Bayesian Optimization 

Bayesian optimization is recognized as an exceptionally 

versatile strategy for optimizing expensive "black box" 

functions without derivatives. The term "black box" refers to 

the situation where only the input and output of the model 

are observable, and the internal workings of the model 

remain unclear. In recent years, Bayesian optimization has 

found widespread application in various domains, including 

environmental monitoring, interactive user interfaces, 

materials and drug design, machine learning, and 

reinforcement learning, owing to its robust optimization 

capabilities. 

Although hand-tuning is a viable option, it is often perceived 

as time-consuming and subjective. Grid Search and Random 

Search are alternative optimization methods that do not 

require direct human intervention. Grid search exhaustively 

explores a predefined subset of hyperparameter spaces, 

while random search, without optimizing the problem 

gradient, selects hyperparameters randomly within the 

specified search space. Both methods, however, can be time-

consuming. Bayesian global optimization techniques offer a 

solution to this problem by efficiently combining priors of 

the problem, aiding in deciding whether the next point in the 

search space should be explored or exploited. 

1.5.2 BAYESIAN OPTIMIZATION STEPS 

Develop a surrogate probability model for the objective 

function. 

• Identify the hyperparameters that exhibit optimal 

performance on the surrogate model. 

• Implement these identified hyperparameters on the actual 

objective function. 

• Update the surrogate model to integrate the new outcomes. 

• Iterate through steps 2–4 until reaching the maximum 

iterations or the allotted time. 

Bayesian analysis finds application in various domains 

where abundant heterogeneous or noisy data is present, or 

whenever a comprehensive understanding of uncertainty is 

essential. 

2. RELATED WORKS  

In the research [1],[2], Reyhaneh Manafi-Farid and Emran 

Askari highlight the critical role of fluorodeoxyglucose 

Positron Emission Tomography and Computed Tomography 

(FDG-PET/CT) in lung cancer detection and management. 

Lung cancer, known for its high mortality rate, necessitates 

innovative diagnostic and prognostic tools. The authors  

deep into the utility of FDG-PET/CT in diagnosing lung 

cancer, assessing treatment response, and predicting 

outcomes. They emphasize the technique's ability to provide 

qualitative and conventional quantitative indices from 

imaging data. 

Additionally, the authors shed light on the emerging field of 

radiomics, which involves sophisticated algorithms to 

extract detailed data from medical images. Radiomics is 

increasingly significant in enhancing the diagnostic 

capabilities and therapeutic implications of FDG-PET/CT in 

lung cancer treatment. The article offers an overview of the 

technical aspects of radiomics, discussing its integration into 

current medical imaging practices and its potential to 

revolutionize lung cancer management. 

In the research [7], Sumeet Hindocha and Thomas G. 

Charlton's research, conducted in October 2022, centers on 

the development of radiomic models for predicting 

outcomes in non-small cell lung cancer (NSCLC) patients 

undergoing radiotherapy. Their primary objective is to 

classify patients based on their risk of recurrence and overall 

survival post-treatment. This approach could pave the way 

for more personalized surveillance and timely interventions, 

ultimately improving patient outcomes. Hindocha and 

Charlton's models amalgamate radiomic and clinical 

features, validated through extensive cross-validation and 

external testing. The results indicate that these models 

effectively stratify patients into low and high-risk groups, 

with a substantial disparity in survival times between these 

groups. This research lays the foundation for future clinical 

trials and underscores the potential of integrating radiomic-

based prediction models into routine radiotherapy 

workflows, facilitating a more personalized approach to 

cancer treatment. 

[8] The article published in 2022 by Hamid Abdollahi and 

Erika Chin's article explores the integration of radiomics into 

radiation therapy, a critical component of personalized 

medicine. Radiomics, through the extraction and analysis of 

complex image features, can significantly impact various 

aspects of radiation therapy, from patient selection to post-

treatment monitoring. The authors introduce the concept of 

radiomics-guided radiation therapy (RGRT), emphasizing 

its potential to optimize treatment protocols, enhance patient 

outcomes, and minimize side effects. 

The article reviews several applications of radiomics in 

radiation therapy, including its role in disease detection, 

diagnosis, prognosis, and response assessment. While 

acknowledging the challenges associated with implementing 

RGRT, such as data standardization and algorithm 

validation, it underscores the enormous potential of 

radiomics to transform radiation therapy into a more precise 

and effective treatment modality. 
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The groundbreaking study [2][3], published in 2023, 

introduces an innovative approach to lung cancer detection 

using artificial intelligence (AI). They developed a deep 

learning model named Deep Radial Recurrent Feedforward 

Neural Nets (DRRFNN), specifically tailored for lung 

cancer classification. Leveraging the power of deep learning 

and Python programming, this model achieves high 

accuracy in diagnosing lung cancer. 

The authors conduct a comparative analysis, pitting 

DRRFNN against existing models like LSTM, GRUs, RBF, 

DBN, FNN, and ANN, ultimately demonstrating its superior 

performance. This research underscores the potential of AI 

and deep learning in revolutionizing medical diagnostics, 

particularly in the early detection of lung cancer. By 

employing advanced models like DRRFNN, the 

methodology for detecting lung cancer could become faster, 

more efficient, and potentially life-saving by identifying 

more patients at an early stage. 

The research addresses the rising incidence of Head and 

Neck Squamous Cell Carcinoma (HNSCC). Their study 

introduces a novel machine learning method that utilizes 

radiomic features extracted from CT and PET images to 

stage the disease. This non-invasive approach has the 

potential to revolutionize the diagnosis and monitoring of 

HNSCC, which traditionally relies on clinical evaluation and 

histopathological examination [5][6]. 

The authors' method includes a selection step to eliminate 

dataset redundancy, followed by the application of machine 

learning algorithms for accurate disease staging. The 

research demonstrates high accuracy in classifying HNSCC 

in terms of pN-Stage, pT-Stage, and Overall Stage, 

underscoring the efficiency of using radiomics in cancer 

staging. Applied to a diverse patient cohort, this approach 

shows promise in enhancing early diagnosis and 

personalized treatment, potentially reducing the need for 

invasive biopsy procedures. 

 

Figure 2 Block Diagram of Model with Convolutional Neural 

Networks (CNNs) 

The authors of [1] considers minimal factors like level of 

cholesterol, heart rate, age and gender. Hence it has the 

probability of giving less accuracy. In the paper [3,5,7] 

continuous monitoring of heart rate has been carried out with 

patient only after the patient is affected by heart attack 

through IOT approach which leads to continuous 

intervention. Conventional approach of detecting the heart 

attack using ECG and blood test, this approach is not 

applicable for effective early detection of heart attack. 

Whereas in [10] the authors have used a logistic regression 

classification algorithm for heart disease detection and 

obtained an accuracy of 77.1%. In the paper [11] the authors 

have used a multi-layer perceptron (MLP) classifier for heart 

disease diagnosis and attained accuracy of 80%. The heart 

disease classification system integrated with neural 

networks and artificial neural network has been addressed in 

the paper [12,13]. In the paper [14], Naïve Bayes (NB) and 

Decision Tree (DT) algorithm for the diagnosis and 

prediction of heart disease has been achieved with 

reasonable results in terms of accuracy of 82.7% with NB 

and 80.4% with DT. 

3. METHODOLOGIES 

In the proposed methodology, we start by acquiring 

histopathology images and resizing them to fit the model's 

specifications. These resized images are then used for 

training and validating the model. The initial outcomes of 

the model are assessed using metrics such as accuracy, 

precision, F1-score, recall, specificity, and misclassification 

rate. If these results are not up to the desired standard, we 

apply the Customized Selective Image Processing (CSIP) 

strategy. 

The CSIP technique specifically targets the class or classes 

where the model's performance is suboptimal. For these 

identified underperforming classes, Enhanced Histogram 

Equalization (EHE) is employed to improve image quality. 

This selective approach ensures that only the images in need 

of enhancement are processed, which significantly reduces 

the time and effort required compared to processing the 

entire dataset. 

Once the EHE process is applied, it redistributes the 

intensity values within the images, effectively enhancing the 

contrast. This step is crucial because improved image 

contrast can lead to better feature recognition and, 

consequently, better model performance. After the EHE 

treatment, all images from the underperforming class are 

replaced with their enhanced versions in the dataset. The 

model is then rerun with this updated set of images for 

training and validation. 

The key advantage of this method is its efficiency and 

targeted nature. By focusing only on the images from classes 

where the model struggles, the CSIP strategy optimizes 

resource use. Enhanced Histogram Equalization, known for 

its efficiency and speed in contrast enhancement, further 

contributes to this streamlined approach. By enhancing only, 

the necessary images and reintegrating them into the training 

and validation process, the model's performance is expected 

to improve specifically in the areas where it was previously 

lacking. 



International Journal of Intelligence Multidisciplinary Engineering Research(IJIMER)          Vol. 1 (4), Dec 2023, pp: 01-11. 

ISSN: 2583-9160 

 

Publication Date: 10-December-2023   5 

 

 

Figure 3 Block diagram of Proposed System 

The proposed system offers several significant advantages, 

particularly in optimizing model performance and enhancing 

image quality: 

Input as Parameter Ranges: Unlike traditional methods 

where specific points are selected based on assumptions, this 

system inputs a range for each parameter. This approach is 

advantageous as it provides a broader scope for the model to 

identify the most effective parameter values, ensuring a 

more comprehensive exploration of the parameter space. 

Randomization of Candidate Points: To avoid excessive 

focus on suboptimal parameters, candidate points are 

randomized. This strategy ensures that the model does not 

waste time evaluating poor parameter choices. The 

randomization adds an element of diversity to the parameter 

selection process, preventing the model from getting stuck 

in potentially less advantageous regions of the parameter 

space. 

Balanced Exploration and Exploitation through Bayesian 

Optimization: One of the key strengths of this system is its 

use of Bayesian Optimization, which adeptly balances 

exploration (investigating new, potentially better 

parameters) and exploitation (utilizing known good 

parameters). This balance is achieved as the algorithm 

intelligently samples points in the parameter space where it 

predicts the optimal values are likely to be found. Such a 

strategic approach can significantly improve the model's 

efficiency and effectiveness. 

Enhanced Contrast in Images: The system is particularly 

beneficial in situations where images have data represented 

by close contrast values. It increases the overall contrast of 

these images by redistributing the intensity values more 

evenly across the histogram. This redistribution allows areas 

of the image with lower contrast to achieve higher contrast, 

which is crucial for better visualization and analysis. 

Improved contrast makes it easier to discern details and 

features in images, which is particularly valuable in fields 

like medical imaging or remote sensing. 

Overall, the proposed system offers a sophisticated approach 

to optimizing model parameters and enhancing image 

quality, making it a valuable tool in various applications 

where accuracy and efficiency are paramount. 

Bayesian Optimization to Optimize CNN 

Bayesian optimization, a powerful tool for hyperparameter 

optimization in deep learning, is a sequential model-based 

approach combining a probabilistic surrogate model (prior 

distribution and observation model) with a loss function to 

select an optimal sequence of queries, minimizing expected 

loss. 

Bayesian Optimization Libraries 

BayesOpt, a Bayesian optimization library under Affero 

General Public License (AGPL), effectively tackles non-

linear and hyperparameter optimization problems. It uses 

function distribution to establish a proxy model of unknown 

functions for optimal solution finding and applies active 

learning to select query points. 

3.1 Implementation of Bayesian Optimization on CNN 

This research aims to apply Bayesian optimization to CNN 

models for a three-way classification task, combining it with 

CNN models to find optimal hyperparameters. The process 

involves: 

Preparing pre-processed images as input data. 

Defining the CNN model and network structure. 

Defining an objective function taking hyperparameters as 

input. 

Using Bayesian optimization objects to minimize 

classification error on the validation set. 

Obtaining optimal hyperparameters for model classification. 

Bayesian optimization was applied to optimize Mini-Batch 

Size, Epoch, Initial Learning Rate, and Momentum. 

Preliminary network training determined the approximate 

search range of hyperparameters. The search ranges were not 

continuous intervals but discrete values within an 

approximate range. 

The B-CNN models combined selected hyperparameter 

values to form various combinations, with validation 

accuracies determining the best model through Bayesian 

optimization, focusing on minimizing the classification error 

of the validation set. 



International Journal of Intelligence Multidisciplinary Engineering Research(IJIMER)          Vol. 1 (4), Dec 2023, pp: 01-11. 

ISSN: 2583-9160 

 

Publication Date: 10-December-2023   6 

 

 

Figure 4 Architecture of the improved CNN 

In this research, we present a comprehensive approach that 

combines Bayesian optimization with machine learning 

algorithms to enhance the accuracy of a CNN model for 

cancer detection classification. The process of applying 

Bayesian optimization to the CNN model is detailed, using 

the Keras library for building the CNN model and an open-

source Bayesian optimization library for the optimization 

task. Studies have indicated that Bayesian optimization 

tends to surpass other methods like random search and grid 

search in efficiency. 

Bayesian optimization is particularly advantageous as it is 

less sensitive to the initial boundary selection. It can 

adaptively expand the search space, enabling the 

identification of optimal hyperparameters within predefined 

bounds to improve model performance. This optimization 

method integrates prior function distribution with sample 

data to derive a function's posterior. The optimal values are 

then determined based on this posterior information and 

specific criteria. 

Enhanced Histogram Equalization (EHE) 

Histogram Equalization is a widely-used technique for 

image improvement, offering more visually appealing 

results compared to histogram stretching. It aims to flatten 

the histogram of the resulting image, enhancing both dark 

and light pixels. 

The pre-processing stage using EHE is critical for preparing 

histopathology images for feature extraction. Issues like 

blurriness, poor border recognition, artifacts, and 

overlapping, often due to uneven staining, are addressed by 

EHE. This technique enhances image contrast by improving 

poor boundary edges at the pixel level and boosting local 

contrast. EHE is particularly suitable for histopathological 

images, enhancing features that are crucial for accurate 

analysis. 

The EHE method involves decomposing the original image 

into high-frequency and low-frequency components. The 

low-frequency components are enhanced using EHE, while 

high-frequency components are left as is to avoid amplifying 

noise. After reconstruction using inverse DWT, EHE is 

applied again to further enhance image details. 

 

4. RESULT AND DISCUSSION 

 Performance evaluation of machine learning models in this 

research is done using a confusion matrix and metrics like 

precision, F1-score, accuracy, and recall. Accuracy is 

defined as the proportion of correctly classified instances 

(True Positives and True Negatives) out of all instances: 

Accuracy = (TP + TN) / (TP + FP + TN + FN) 

Precision measures the proportion of true positives among 

all positives identified: 

Precision = TP / (TP + FP) 

Recall, or sensitivity, calculates the percentage of actual 

positives correctly identified: 

Recall = TP / (TP + FN) 

The F1-score provides a balance between precision and 

recall, representing their harmonic mean: 

F1-score = 2 × (Precision × Recall) / (Precision + Recall) 

These metrics are crucial for assessing the model's ability to 

accurately classify cancerous tissues, which is essential for 

effective diagnosis and treatment planning. 

 

Figure 5 Dataset Sample Images 
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. Figure 6 Histogram Images for different lung cancer 

Lung and colon cancers rank among the leading causes of 

death globally, making early and accurate detection crucial 

for enhancing therapeutic outcomes and increasing survival 

rates. The primary objective of this research was to develop 

a method for the efficient and precise diagnosis of lung and 

colon cancers. 

A key component of this research was the focus on image 

quality improvement, specifically through image contrast 

enhancement. The chosen method for this purpose was 

histogram equalization, recognized for its efficiency and 

computational speed. Histogram Equalization (HE) is 

particularly effective in adjusting the contrast of images, 

making it easier to identify and analyze key features in 

medical imaging. 

To optimize the performance of our cancer detection model, 

we implemented an Enhanced Histogram Equalization 

(EHE) technique. However, instead of applying EHE to the 

entire dataset, we strategically targeted only the images from 

underperforming classes. This selective approach was 

designed to save time and reduce computational costs, while 

still significantly improving the classification accuracy of 

the model. 

Our proposed methodology, which combines targeted 

contrast enhancement with sophisticated machine learning 

algorithms, demonstrated promising results. When 

benchmarked against existing methods in lung and colon 

cancer detection, our approach showed an improvement in 

detecting these cancers. This advancement in early cancer 

detection methodology could be a pivotal step in medical 

diagnostics, offering a more effective tool for healthcare 

professionals in the fight against these prevalent cancers. 

 

Figure 6 Hyperparameter Optimization In Alexnet For 

Malignancy Detection In Lung And Colon Histopathology 

Images Using Csip-EHE 

 

Figure 7 Main Menu 

 

Figure 9 Colon aca data 
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Figure 11 Histogram Image of Colon aca 

 

 

Figure 8 Processing Image of Colon aca 

 

Figure 10 Colon n data 

 

 

Figure 12 Histogram Image of Colon n 

 

Figure 13 Processing Image of Colon n 

 

Figure15 Lung aca data 
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Figure 17 Histogram Image of Lung aca 

 

Figure 14 Processing Image of Lung aca 

 

Figure 16 Lung ndata 

 

Figure 18 Histogram Image of Lung n 

 

Figure 19 Processing Image of Lung n 

 

Figure 21 Lung sca Data 
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Figure 23 Histogram Image of Lung sca 

 

 

Figure 20 Processing Image of Lung sca 

 

Figure 22 F-Measure Performance 

 

Figure 24 Recall Performance 

 

Figure 25 Precision Performance 

 

Figure 26 Accuracy Performance 
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5. CONCLUSION 

This research endeavor aimed to enhance the detection of lung 

and colon cancer utilizing deep learning techniques. Initially, 

our model achieved an accuracy rate of 89%. To elevate its 

performance, we introduced the Bayesian Optimization 

Algorithm - Enhanced Histogram Equalization (BAO-EHE) 

method, resulting in an accuracy exceeding 99%. Our research 

outperformed existing methods, simultaneously reducing both 

time and computational costs. Key research metrics included a 

99% accuracy, 99% precision, a 99.78% recall rate, and a 

99.66% F1-score, unequivocally affirming the efficacy of our 

research in the realm of colon and lung cancer classification. 

Notably, our research excelled in colon cancer detection, 

offering valuable support to pathologists in the verification of 

their diagnoses. Our future research plans encompass the 

extensive testing of our model on diverse datasets and the 

exploration of hybrid optimization techniques. This research 

innovation holds the promise of advancing disease diagnosis, 

ultimately contributing to improved patient outcomes and 

enhanced survival rates. 
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